Journal of Obstetrics, Gynecology and Cancer Research | ISSN: 2476-5848

Clinical, Laboratory and Imaging Characteristics of Women with Uterine Fibroid: A Cross-Sectional Study from Iran

Farah Farzaneh Rahimi Mansour Amir Reza Keyvanfar Rahimi Mansour Rahimi Mansour Rahimi Mansour Reza Keyvanfar Rahimi Mansour Rahimi Mansour Reza Keyvanfar Rahimi Mansour R

- 1. Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 2. Universal Scientific Education and Research Network (USERN), Tehran, Iran
- 3. Department of Cell and Molecular Biology, School of Biological Sciences, Kharazmi University, Tehran, Iran
- 4. Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Article Info

doi 10.30699/jogcr.9.1.45

Received: 2023/02/26; Accepted: 2023/07/27; Published Online: 22 Jan 2024;

Use your device to scan and read the article online

Corresponding Information: Shaghayegh Hooshmand Chayijan,Preventative Gynecology Research Center,

Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Email: Hooshmandsh@sbmu.ac.ir

ABSTRACT

Background & Objective: Uterine fibroids (UFs) are the most common pelvic tumors among women at reproductive age, affecting women's quality of life even their confidence with its symptoms. We designed a study to investigate the clinical, laboratory, and imaging characteristics of Iranian women with UF.

Materials & Methods: This cross-sectional study was performed from April 2016 to September 2022 at Imam Hossein hospital (Tehran, Iran). We included all women with UF referring to the Obstetrics and Gynecology Clinic of Imam Hossein Hospital. Based on a checklist, a research team interviewed the patients to investigate clinical characteristics. Also, we explored laboratory and transvaginal sonography (TVS) findings of all patients.

Results: The mean age of 439 studied patients was 44.47 ± 8.80 years (range: 23-81). The most prevalent underlying disease was hypertension (17.1%), followed by thyroid diseases (15.7%) and diabetes mellitus (13.7%). The patients mainly complained of AUB (abnormal menstrual bleeding) (60.0%) and abdominal pain (23.7%). The mean NLR (neutrophil to lymphocyte ratio) and the mean PLR (platelet to lymphocyte ratio) were significantly higher than the normal upper limit (P<0.001). The largest diameter of UF was 49.89 ± 47.92 mm. Most fibroids were located anteriorly (43.1%). The multivariate linear regression model revealed that age (β=-0.931, 95%CI= (-1.657, -0.204), P=0.012) and number of fibroid (β=22.418, 95%CI= (16.360, 28.476), P<0.001) could predict the size of fibroid.

Conclusion: Our results showed that NLR and PLR were increased in UF patients. It seems that patient's age and number of fibroids may be the predictive factors for UF's size.

Keywords: Abnormal Uterine Bleeding, Hypertension, Neutrophil, Leiomyoma, Lymphocyte, Ultrasonography

Copyright © 2024, This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International License which permits copy and redistribution of the material just in noncommercial usages with proper citation.

Introduction

Uterine fibroids (UFs, uterine myoma, leiomyoma) are the most common pelvic tumors, originating from smooth muscle of uterine (1). UFs affect more than 70% of women at their reproductive age worldwide (2). Due to their hormonally-responsive nature, they are extremely rare before menarche, and usually regress after menopause (3). 25-50% of patients complain from aboard spectrum of manifestations including abnormal uterine bleeding, pelvic pain, pressure, urinary frequency, and infertility. However, the literature has reported many factors playing a role in the progression of UF, for instance, nulliparity, early menarche, polymenorreha, family history of UFs, obesity, age

(peak incidence at 40-50), hypertension, and diabetes (4).

The size, number, and location of the UF are options that should be considered for the severity of the symptoms and choosing the treatment (5). Moreover, the patient's age and her desire for the preservation of fertility are also important. So, with a sensitivity of 90-99% for transvaginal sonography (TVS), it is a good and low-cost imaging technique for UF diagnosis (6). Symptomatic UFs may be treated medically, surgically, or with a combination of both (7). UF may cause infertility depending on the location in the uterus in 2-3% of women. For example, submucosal and

intramural fibroid altering the endometrial cavity are associated with lower pregnancy rates (8). This study aimed to determine the clinical, laboratory, and imaging characteristics of an Iranian woman with uterine UF.

Methods

This cross-sectional study was performed between April 2016 and September 2022 at Imam Hossein Hospital (Tehran, Iran). The study protocol was approved by the Research Ethics Committee of Vice-Chancellor in Research Affaires-Shahid Beheshti of Medical Sciences (IR.SBMU.RETECH.REC.1401.220). The inclusion criteria were: Women referring to the Obstetrics and Gynecology Clinic of Imam Hossein Hospital, at least 18 years old, diagnosis of UF by the pathology of the tissue specimens obtained through surgery. The exclusion criteria included patients who had an acute event during the study, patients with incomplete clinical testing information in their follow-up data; and patients diagnosed with pregnancy or fatal diseases, such as cancer, based on their pathology results.

Data collection

In this study, data collection was done based on the census method. Based on a checklist the research team interviewed eligible patients to investigate age, body mass index (BMI), gravidity, parity, menopausal status, past medical history, and symptoms.

Besides, the following laboratory tests were taken from all patients: complete blood count (CBC), Iron profile, and lipid profile. Blood samples were analyzed by the Laboratory of Imam Hossein hospital.

All patients underwent TVS by an expert radiologist. For the ultrasound assistant, we considered uterine size, endometrial thickness, and characteristics of observed fibroid (number, size, location, and FIGO classification). The UF was resected by different surgical procedures: total abdominal hysterectomy (TAH), myomectomy, and total vaginal hysterectomy (TVH). Finally, myoma was diagnosed by pathology.

Statistical analysis

Analysis program

Data analysis was performed using IBM® SPSS® Statistics version 23.0 Chicago, USA.

Data and Analysis

Data were described as frequency, percentage, mean, standard deviation, mean difference, and 95% confidence interval (CI). Laboratory tests were compared with assumed values using the One-sample t-test. Multivariate linear regression (Backward method) was used to investigate which variable could predict the size of fibroid. The following variables were entered into the regression model: age, BMI, past medical history (hypertension, dyslipidemia, and thyroid diseases), laboratory tests (WBC, hemoglobin, Platelet count, and NL ratio), and imaging findings (size of the uterus and the frequency of fibroid). In this study, the P<0.05 was considered statistically significant.

Ethical considerations

This study was conducted by the Helsinki declaration. All patients completed the informed consent form after explaining the study protocol.

Results

Demographic and medical history of the patients

The mean age of 439 included patients was years (range: 23-81). Regarding 44.47 ± 8.80 status, most participants menopausal premenopausal women (67.9%), and the others were postmenopausal women (32.1%). The most prevalent underlying disease was hypertension (17.1%), followed by thyroid diseases (15.7%), diabetes mellitus (13.7%), and anemia (11.0%). The patients mainly complained of abnormal menstrual bleeding (60.0%), abdominal pain (23.7%), intermenstrual bleeding (13.2%), dysmenorrhea (9.1%), dyspareunia (6.2%), stress incontinency (6.2%), and post-coitus bleeding (6.0%). Table 1 depicts the demographic and medical history of the patients.

Table 1. Demographic and medical history of the patients (n=439)

Values
44.47±8.80
127(29.0)
156(35.5)
156(35.5)
98(22.3)
43(9.8)

Variables	Values
Multigravid	298(67.9)
Parity	
Nullipara	110(25.0)
Unipara	50(11.4)
Multipara	279(63.6)
Menopausal status	
Premenopausal women	298(67.9)
Postmenopausal women	141(32.1)
Past medical history	
Hypertension	75(17.1)
Thyroid diseases	69(15.7)
Diabetes mellitus	60(13.7)
Anemia	48(11.0)
Cardiovascular diseases	25(5.7)
Dyslipidemia	20(4.6)
Malignancy*	10(2.3)
Polycystic ovary syndrome	2(0.5)
Symptoms	
Abnormal menstrual bleeding	262(60.0)
Abdominal pain	104(23.7)
Intermenstrual bleeding	58(13.2)
Dysmenorrhea	40(9.1)
Dyspareunia	27(6.2)
Stress incontinency	27(6.2)
Post-coitus bleeding	26(6.0)
Urinary incontinency	13(3.0)
Data were reported as frequency (%) or mean+ standard deviation	

Data were reported as frequency (%) or mean± standard deviation.
* including breast cancer (9 patients) and endometrial cancer (1 patient)

Laboratory and imaging findings of the patients

As shown in <u>Table 2</u>, we compared laboratory findings to assumed values. The mean NL ratio was 8.20±9.01, which was significantly higher than the normal upper limit (3.0) with MD=5.20, 95% CI= (4.32, 6.07), and P<0.001. The mean PL ratio was 218.66±162.13, which was significantly higher than the normal upper limit (175.0) with MD=43.66, 95% CI= (27.82, 59.50), and P<0.001. Nevertheless, other laboratory tests were either within the normal range or did not significantly differ from the assumed values.

TVS revealed that the mean size of the uterus (largest diameter) was 101.36 ± 39.15 mm, with an endometrial thickness of 8.86 ± 6.41 mm. Furthermore, the mean frequency of observed fibroid was 1.94 ± 0.92 (Minimum: 1, Maximum: 5) with the largest diameter of 49.89 ± 47.92 mm. In terms of location, most fibroid were located anteriorly (43.1%), followed by the posterior segment (26.2%), fundus (21.64%), and lateral segment (9.1%). Figure 1 illustrates the frequency of fibroid based on the FIGO classification system.

Table 2. Laboratory findings of the patients (n=439)

Variables	Normal range	Values	Assumed value	Mean difference (95% CI)	P-value
White blood cells $(10^3/\mu L)$	4000 – 10,500	9.79±4.16	10.5	-0.070 (-1.10, -0.30)	0.001
NL ratio	1 - 3.6	8.20±9.01	3.0	5.20 (4.32, 6.07)	< 0.001
Hemoglobin (mg/dL)	12 - 15	11.42±7.04	12.0	-0.57 (-1.24, 0.10)	0.097
Platelet count (10 ³ /μL)	155,000 - 350,000	260.19±80.80	350.0	-89.80 (-97.60, -81.99)	< 0.001
PL ratio	40 - 175	218.66±162.13	175.0	43.66 (27.82, 59.50)	< 0.001
Serum iron (µg/dL)	60 - 170	53.32±31.80	60.0	-6.67 (-14.31, 0.96)	0.086
Ferritin (ng/mL)	12 - 150	29.70±50.80	12.0	17.70 (6.60, 28.79)	0.002
TIBC (μg/dL)	240 - 450	347.58±125.29	450.0	-102.41 (-132.51, - 72.31)	< 0.001
Triglyceride (mg/dL)	< 150	135.05±56.16	150.0	-14.94 (-28.43, -1.45)	0.030
Cholesterol (mg/dL)	< 200	181.68±49.68	200.0	-18.31 (-30.72, -5.90)	0.004
HDL (mg/dL)	> 50	47.08±12.31	50.0	-2.91 (-6.41, 0.58)	0.101
LDL (mg/dL)	< 100	102.38±43.85	100.0	2.38 (-10.20, 14.98)	0.705

Data were reported as frequency (%) or mean± standard deviation.

CI: confidence interval, HDL: high-density lipoprotein, LDL: low-density lipoprotein, NL ratio: neutrophil to lymphocyte ratio, PL ration: platelet to lymphocyte ration, TIBC: total iron-binding capacity.

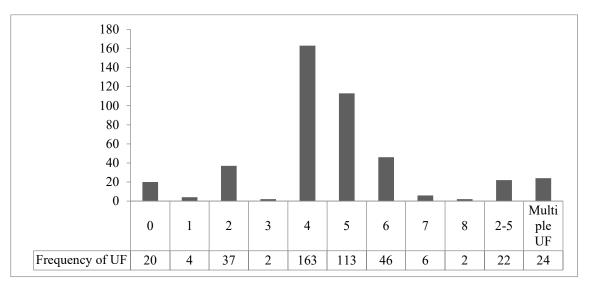


Figure 1. The frequency of UF based on the FIGO classification system.

Surgical procedures and pathological findings

Regarding the surgical procedure, most patients underwent TAH (69.5%). However, others underwent myomectomy (30.0%) or TVH (0.5%). Additionally, pathology revealed that all specimens had fibroids.

Multivariate linear regression model to predict the size of UF

The multivariate linear regression model presents that age (β =-0.931, 95%CI= (-1.657, -0.204), P=0.012) and the number of fibroid (β =22.418, 95%CI= (16.360, 28.476), P<0.001) could predict the size of fibroid (Table 3).

Table 3. Multivariate linear regression model to predict the size of UF

Variables	Regression coefficient	95 % Confidence interval	P-value
Constant	97.540	(44.988, 134.275)	< 0.001
Age	-0.931	(-1.657, -0.204)	0.012
Body mass index	-1.153	(-2.349, 0.043)	0.059
Platelet to lymphocyte ratio	0.020	(-0.013, 0.052)	0.237
number of UF	22.418	(16.360, 28.476)	< 0.001

Discussion

Our cross-sectional study showed that among study's patients besides all other UF characteristics, NLR and PLR increasing is significant and somehow the patient's age and number of the fibroid could predict its size.

Underlying disease

It seems changes due to factors like inflammation, environmental factors or enzyme functional problems, etc., in the vascular structures of UF, can lead to higher pulse pressure in women who have UF (9). Like other studies our result showed the companionship of hypertension and cardiovascular disease in UF. Because of the risk of preeclampsia or pregnancy loss, this connection should be highly considered when the patient is willing to get pregnant (10).

Changing in the Sex hormones in UF, affect thyroid function and thyroid-stimulating hormone (TSH) regulation. It seems having UF may increase the risk of thyroids nodules (11). But in our study, 2/3 of patients with thyroid disease showed hypothyroidism as the common thyroid dysfunction. The mechanism of this bilateral relationship needs to be clarified by more research.

Interestingly, with diabetic and the BMI >25 kg/m² patients in our study group who underwent surgeries, studies still show diabetes as a protective factor for UF (12, 13). According to another study, this protection may be due to receiving diabetes medications such as metformin (14).

Following AUB, anemia is prevalent in UF patients. Anemia in these patients also affects the quality of hospitalization and the surgery process for treating UF (15). Some studies have shown the types, sizes, and locations of UFs are associated with anemia (16, 17).

Mainly complained

Specific characteristics of UF, like its location and size, can cause heavy menstrual bleeding (HMB) (18). Based on the FIGO classification, respectively intramural and subserosal UF with nearly 36 and 26% in our study confirmed that hospitalization of patients with UF is affected by the intramural type and AUB, which are independent factors for anemia too (15).

Based on some studies urine dysfunctions may be the symptom of having UF at the anterior location of the uterus. The size up to 5cm also may be the risk factor for the recurrence of the UF (19). So, it was interesting that we found Along with stress incontinence as a symptom, about half of our patients had anteriorly located UFs with the largest diameter of 4.9cm. So, our result confirmed the previously mentioned study.

Laboratory findings

Neutrophil cells are present in the disease's acute or chronic inflammation phase, which can have proinflammatory effects. Lymphocytes are also present in chronic inflammation. According to prior studies, UF-related infertility is related to pro-inflammatory mediators. Studies have shown the NLR, as a prognostic indicator and a marker of the chronic inflammation process is connected to the size of UF (20-24).

Similar to the result of one study, we found that the NLR and PLR were higher in our study group (25). Even as an indicator of cellular immune inflammation or as an important index for UF's predictive model, some studies showed a higher level of PLR can be used in differentiating between normal endometrial patients and those who have cancerous or benign endometrium (26).

Sonography findings

TVS with a sensitivity of 89.2% and specificity of 99.6% for diagnosing UF is the first and low-cost choice among all other imaging techniques. But some studies suggest that MRI (magnetic resonance imaging) may be a better choice than TVS when imaging results are modified with the patient's demographical and clinical data (27, 28).

Small fibroids are dynamic and grow faster, and their complications and dangerous outcomes, such as pregnancy loss or preterm delivery rate, are more than bigger ones (29). In our study, patients' TVS results showed they all have at least one UF, the largest size of them was about 5 cm and most UFs were anteriorly and the intramural type (FIGO4).

Surgery

The features of UF help the physician to choose the proper treatment. When the patient shows moderate symptoms and wishes to preserve her fertility myomectomy in laparoscopic style is a good choice, but when the patient is in the postmenopausal phase or has severe symptoms hysterectomy will be done and it seems women who go under hysterectomy will experience a better quality of life-changing (30, 31). The outcomes of these surgeries' treatments are related to various factors, including gravidity, parity, preoperative and postoperative hemoglobin differences, NLR and even the number of fibroids. The severity of symptoms and features of UF in our patients showed TAH as the common choice for surgery.

At 2021 one meta-analysis study in the Middle East showed disease factors or characteristics for UF may be different in Middle East origin women (32). The strength of our study is that it is the first cross-sectional study for describing UF among Iranian women which may help other researchers even Iranian ones as a source for their future studies.

Conclusion

Our results showed that NLR and PLR were increased in patients with UF. Additionally, we found the patient's age and the number of fibroids could predict UF size. UF outcomes for patients and treatment options are usually connected to UF's size. Further studies may find a good predicting model based on UF's characteristics which can be used by the physician to choose the best treatment.

Acknowledgments

We could not have undertaken this journey without our families who rise us as persons to look beyond anything, ask questions freely and take steps with courage for exploring the universe concerning humanity and being humble.

Abbreviations

BMI (body mass index), CBC (complete blood count), CI (confidence interval), FIGO classification (Federation Internationale de Gynecolgie d'Obstetrique (in French)), HDL (high-density lipoprotein), NLR (Neutrophil to lymphocyte ratio), LDL (low-density lipoprotein), PLR (Platelet to lymphocyte ratio), TAH abdominal (total hysterectomy), TIBC (Total iron-binding capacity, TSH (thyroid-stimulating hormone), TVH (total vaginal hysterectomy), **TVS** (transvaginal sonography), UF (Uterine Fibroids, uterine myoma, leiomyoma), WBC (White blood cell).

Author's Contributions

FF: Conceived and designed the analysis. SHHC: collected the data, wrote the paper. HN: wrote the paper. FRM: wrote the paper; AK: performed the analysis, contributed data or analysis tools. ZB: collected the data.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

The authors received no financial support for the research, authorship, or publication of this article.

References

- Manickavasagam M. Management of Cesarean Myomectomy in a Patient with Multiple Fibroids and an Obstructing Lower Uterine Segment Fibroid. J Obstet Gynaecol Res. 2020;5(2):57-60. [DOI:10.30699/jogcr.5.2.57]
- Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive review of uterine fibroids: developmental origin, pathogenesis, and treatment. Endocr Rev. 2022; 43(4):678-719. [DOI:10.1210/endrev/bnab039] [PMID] [PMCID]
- 3. Giuliani E, As-Sanie S, Marsh EE. Epidemiology and management of uterine fibroids. Int J Gynecol Obstet. 2020;149(1):3-9.

 [DOI:10.1002/ijgo.13102] [PMID]

- 4. Stewart EA, Cookson C, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG. 2017;124(10):1501-12. [DOI:10.1111/1471-0528.14640] [PMID]
- Kwas K, Nowakowska A, Fornalczyk A, Krzycka M, Nowak A, Wilczyński J, Szubert M. Impact of contraception on uterine fibroids. Medicina. 2021;57(7):717. [PMID] [PMCID] [DOI:10.3390/medicina57070717]
- Vilos GA, Allaire C, Laberge P-Y, Leyland N, Vilos AG, Murji A, Chen I. The management of uterine leiomyomas. J Obstet Gynaecol. 2015; 37(2):157-78. [PMID] [DOI:10.1016/S1701-2163(15)30338-8]

- 7. De La Cruz MSD, Buchanan EM. Uterine fibroids: diagnosis and treatment. Am Fam Physician. 2017;95(2):100-7.
- 8. Freytag D, Günther V, Maass N, Alkatout I. Uterine fibroids and infertility. Diagnostics. 2021;11(8):1455. [PMID] [PMCID] [DOI:10.3390/diagnostics11081455]
- Laughlin-Tommaso SK, Fuchs EL, Wellons MF, Lewis CE, Calderon-Margalit R, Stewart EA, Schreiner PJ. Uterine fibroids and the risk of cardiovascular disease in the coronary artery risk development in young adult women's study. J Womens Health. 2019;28(1):46-52.
 [DOI:10.1089/jwh.2018.7122][PMID][PMCID]
- Chen Y, Lin M, Guo P, Xiao J, Huang X, Xu L, et al. Uterine fibroids increase the risk of hypertensive disorders of pregnancy: a prospective cohort study. J Hypertens. 2021; 39(5):1002-8. [PMID] [PMCID]
 [DOI:10.1097/HJH.0000000000002729]
- 11. Li S, Li W, Sheng B, Zhu X. Relationship between thyroid disorders and uterine fibroids among reproductive-age women. Endocr J. 2021; 68(2):211-9. [DOI:10.1507/endocrj.EJ20-0340] [PMID]
- 12. Baird DD, Travlos G, Wilson R, Dunson DB, Hill MC, D'Aloisio AA, et al. Uterine leiomyomata in relation to insulin-like growth factor-I, insulin, and diabetes. Epidemiology. 2009;20(4):604-10. [DOI:10.1097/EDE.0b013e31819d8d3f] [PMID] [PMCID]
- Wise LA, Palmer JR, Stewart EA, Rosenberg L. Polycystic ovary syndrome and risk of uterine leiomyomata. Fertil Steril. 2007;87(5):1108-15.
 [DOI:10.1016/j.fertnstert.2006.11.012] [PMID]
 [PMCID]
- 14. Tseng C-H. Metformin use is associated with a lower risk of uterine leiomyoma in female type 2 diabetes patients. Ther Adv Endocrinol Metab. 2019;10:2042018819895159. [PMID] [PMCID] [DOI:10.1177/2042018819895159]
- Antunes D, Gante I, Carvalho MJ, Medeiros-Borges C, Águas F. The impact of anemia on treatment management and clinical outcomes of women hospitalized for uterine leiomyomas. Ginekol Pol. 2022;93(10):799-805.
 [DOI:10.5603/GP.a2022.0086] [PMID]
- Ricci G, Scrimin F, Sartore A, Borelli M, Zito G, Romano F, Stabile G. Characteristics of Submucous Myomas and the Risk of Anemia. Medicina. 2022;58(11):1652. [PMID] [PMCID] [DOI:10.3390/medicina58111652]
- 17. Bachmann GA, Bahouth LA, Amalraj P, Mhamunkar V, Hoes K, Ananth CV. Uterine fibroids: Correlations of anemia and pain to

- fibroid location and uterine weight. J Reprod Med. 2011;56(11-12):463-6.
- 18. Dolmans M-M, Cacciottola L, Donnez J. Conservative management of uterine fibroid-related heavy menstrual bleeding and infertility: time for a deeper mechanistic understanding and an individualized approach. J Clin Med. 2021; 10(19):4389. [DOI:10.3390/jcm10194389] [PMID] [PMCID]
- 19. Mourgues J, Villot A, Thubert T, Fauvet R, Pizzoferrato A-C. Uterine myomas and lower urinary tract dysfunctions: A literature review. J Gynecol Obstet Hum Reprod. 2019;48(9):771-4. [DOI:10.1016/j.jogoh.2019.03.021] [PMID]
- Çınar M, Aksoy RT, Güzel Aİ, Tokmak A, Yenicesu O, Sarıkaya E, Evliyaoğlu Ö. The association between clinical parameters and uterine fibroid size in patients who underwent abdominal myomectomy. J Exp Ther Oncol. 2016;11:195-8.
- Sevostyanova O, Lisovskaya T, Chistyakova G, Kiseleva M, Sevostyanova N, Remizova I, Buev Y. Proinflammatory mediators and reproductive failure in women with uterine fibroids. Gynecol Endocrinol. 2020;36(sup1):33-5.
 [DOI:10.1080/09513590.2020.1816726] [PMID]
- 22. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9(6):7204-18. [DOI:10.18632/oncotarget.23208] [PMID] [PMCID]
- 23. Suh DS, Song YJ, Roh H-J, Lee SH, Jeong DH, Lee TH, et al. Preoperative blood inflammatory markers for the differentiation of uterine leiomyosarcoma from leiomyoma. Cancer Manag Res. 2021;13:5001-11. [PMID] [PMCID] [DOI:10.2147/CMAR.S314219]
- 24. Bacanakgil BH, Kaban I, Unal F, Guven R, Sahin E, Yildirim SG. Predictive value of hematological inflammatory markers in endometrial neoplasia. Asian Pac J Cancer Prev. 2018;19(6):1529-32.
- 25. Duan Y, Peng Y, Shi X, Zhao Y, Liu K, Zhou R, Peng C. Correlation Between Platelet-Lymphocyte Ratio and Neutrophil-Lymphocyte Ratio in Patients with Uterine Leiomyoma: A Cross-Sectional Study. J Oncol. 2022;2022: 3257887. [DOI:10.1155/2022/3257887] [PMID] [PMCID]
- 26. Acmaz G, Aksoy H, Unal D, Ozyurt S, Cingillioglu B, Aksoy U, Muderris I. Are neutrophil/lymphocyte and platelet/lymphocyte ratios associated with endometrial precancerous and cancerous lesions in patients with abnormal uterine bleeding? Asian Pac J Cancer Prev. 2014;

- 15(4):1689-92. [DOI:10.7314/APJCP.2014.15.4.1689] [PMID]
- 27. Niknejadi M, Haghighi H, Ahmadi F, Niknejad F, Chehrazi M, Vosough A, Moenian D. Diagnostic accuracy of transvaginal sonography in the detection of uterine abnormalities in infertile women. Iran J Radiol. 2012;9(3):139-44. [DOI:10.5812/iranjradiol.8063] [PMID] [PMCID]
- 28. Bougie O, Bedaiwy MA, Laberge P, Lebovic G, Leyland N, Atri M, Murji A. Quality of ultrasonography reporting and factors associated with selection of imaging modality for uterine fibroids in Canada: results from a prospective cohort registry. CMAJ Open. 2020;8(3):E506-E13. [DOI:10.9778/cmajo.20200004] [PMID] [PMCID]
- 29. Cagan M, Tanacan A, Donmez HG, Fadiloglu E, Unal C, Beksac MS. The effect of small size uterine fibroids on pregnancy outcomes in highrisk pregnancies. Rev Bras de Ginecol e Obstet. 2020;42:535-9. [DOI:10.1055/s-0040-1713913] [PMID] [PMCID]

- 30. Alborzi S, Ghannadan E, Alborzi S, Alborzi M. A comparison of combined laparoscopic uterine artery ligation and myomectomy versus laparoscopic myomectomy in treatment of symptomatic myoma. Fertil Steril. 2009;92(2): 742-7. [DOI:10.1016/j.fertnstert.2008.06.011] [PMID]
- 31. Wallace K, Zhang S, Thomas L, Stewart EA, Nicholson WK, Wegienka GR, et al. Comparative effectiveness of hysterectomy versus myomectomy on one-year health-related quality of life in women with uterine fibroids. Fertil Steril. 2020;113(3):618-26.

 [DOI:10.1016/j.fertnstert.2019.10.028] [PMID]
- 32. Mousa M, Al-Jefout M, Alsafar H, Kirtley S, Lindgren CM, Missmer SA, et al. Prevalence of Common Gynecological Conditions in the Middle East: Systematic Review and Meta-Analysis. Front Reprod Health. 2021;3:661360. [DOI:10.3389/frph.2021.661360] [PMID] [PMCID]

How to Cite This Article:

Farzaneh, F., Hooshmand Chayijan, S., Najafi Arab, H., Rahimi Mansour, F., Keyvanfar, A., Bakhtiyari, Z. Clinical, Laboratory and Imaging Characteristics of Women with Uterine Fibroid: A Cross-Sectional Study from Iran. J Obstet Gynecol Cancer Res. 2024;9(1):45-52.

Download citation:

RIS | EndNote | Mendeley |BibTeX |