Farname Inc. in collaboration with Iranian Society of Gynecology Oncology

Authors

1 Legal Medicine Research Center, Legal Medicine Organization, Ahvaz, Iran.

2 Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.

4 Legal Medicine Research Center, Legal Medicine Organization, Ahvaz, Iran

5 Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

6 Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran

7 Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran

Abstract

Surrogacy is an assisted reproductive technology in which the intended parents allocate the gestation and birth to another woman named the surrogate mother. From this view of surrogacy, although there is no genetic relationship between surrogate mother and fetus, this approach is faced with some issues such as the epigenetic effect, which is the environmental influence on gene expression. Epigenetics plays a critical role in ovulation, spermatogenesis, and embryonic growth, development, and health. DNA methylation, histone modification, and non-coding RNAs activity are the major epigenetic mechanisms. In this mini-review, we focus on the possibility of epigenetic alterations during in vivo embryo culture and intrauterine life.

Keywords

  1. 1. Soderstrom-Anttila V, Wennerholm UB, Loft A, Pinborg A, Aittomäki K, Romundstad LB, et al. Surrogacy: outcomes for surrogate mothers, children and the resulting families-a systematic review. Hum Reprod Update 2016; 22(2):260-76. [DOI:10.1093/humupd/dmv046] 2. Simopoulou M, Sfakianoudis K, Tsioulou P, Rapani A, Anifandis G, Pantou A, et al. Risks in Surrogacy Considering the Embryo: From the Preimplantation to the Gestational and Neonatal Period. Biomed Res Int 2018; 2018:6287507. [DOI:10.1155/2018/6287507] 3. Rezaei Z, Adabi K, Sadjadi A. A Comparison of endometrial thickness and pregnancy outcomes in two methods of intrauterine injection and subcutaneous injection of gcsf in infertile women candidates for IVF. J Obstet Gynecol Cancer Res 2020; 5(2):39-43. [DOI:10.30699/jogcr.5.2.39] 4. Zademodares S, Abbaspour M, Anbarluei M, Rahmati N, Fathi M, Naeiji Z. In vitro Fertilization outcome in Patients with Polycystic Ovary Syndrome: Role of Age and Maternal Body Weight. J Obstet Gynecol Cancer Res. 2021; 6(4):161-6. [DOI:10.30699/jogcr.6.4.161] 5. Beale JM, Creighton SM. Long-term health issues related to disorders or differences in sex development/intersex. Maturitas 2016; 94:143-8. [DOI:10.1016/j.maturitas.2016.10.003] 6. Dar S, Lazer T, Swanson S, Silverman J, Wasser C, Moskovtsev SI, et al. Assisted reproduction involving gestational surrogacy: an analysis of the medical, psychosocial and legal issues: experience from a large surrogacy program. Hum Reprod 2015; 30(2):345-52. [DOI:10.1093/humrep/deu333] 7. Chen J, Wang Y, Wang C, Hu JF, Li W. LncRNA Functions as a New Emerging Epigenetic Factor in Determining the Fate of Stem Cells. Front Genet 2020; 11:277. [DOI:10.3389/fgene.2020.00277] 8. Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, et al. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 2020; 19(1):64. [DOI:10.1186/s12943-020-01159-9] 9. Ge SQ, Lin SL, Zhao ZH, Sun QY. Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: implications for male fertility and offspring health. Oncotarget 2017; 8:53804-18. [DOI:10.18632/oncotarget.17479] 10. Huntriss J, Balen AH, Sinclair KD, Brison DR, Picton HM. Epigenetics and Reproductive Medicine: Scientific Impact Paper No. 57. BJOG 2018; 125(13):e43-e54. [DOI:10.1111/1471-0528.15240] 11. Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril 2009; 91(4):1119-26. [DOI: 10.1016/j.fertnstert.2008.01.063] 12. Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 2013; 23(11):1256-69. [DOI:10.1038/cr.2013.110] 13. Nematollahi A, Tavalaee M, Rezaeian A, Nasr- Esfahani MH. The role and importance of DNA methylation in spermatogenesis process. Med Sci J Islamic Azad Univ 2021; 31(1):1-13. [DOI:10.52547/iau.31.1.1] 14. Iannello A, Rolla S, Maglione A, Ferrero G , Bardina V, Inaudi I, et al. Pregnancy Epigenetic Signature in T Helper 17 and T Regulatory Cells in Multiple Sclerosis. Front Immunol 2018; 9:03075. [DOI:10.3389/fimmu.2018.03075] 15. Green BB, Marsit CJ. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues. Curr Environ Health Rep 2015; 2(2):126-6. [DOI:10.1007/s40572-015-0045-0] 16. Breton-Larrivee M, Elder E, McGraw S. DNA methylation, environmental exposures and early embryo development. Anim Reprod 2019; 16(3):465-74. [DOI:10.21451/1984-3143-AR2019-0062] 17. Rashidi M, Tavalaee M, Abbasi H, Nomikos M, Nasr-Esfahani MH. Increased de novo DNA Methylation Enzymes in Sperm of Individuals with Varicocele. Cell J 2021; 23(4):389-96.[DOI: 10.22074/cellj.2021.7265] 18. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 2004; 74(4):599-609. [DOI:10.1086/382897] 19. Gokbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146(19):dev164772. [DOI:10.1242/dev.164772] 20. La Rovere M, Franzago M, Stuppia L. Epigenetics and Neurological Disorders in ART. Int J Mol Sci 2019; 20(17):4169. [DOI:10.3390/ijms20174169] 21. Bowdin S, Allen C, Kirby G, Brueton L,Afnan M, Barratt C, et al. A survey of assisted reproductive technology births and imprinting disorders. Hum Reprod 2007; 22(12):3237-40. [DOI:10.1093/humrep/dem268] 22. Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012; 144(4):393-409. [DOI:10.1530/REP-12-0237] 23. Ventura-Junca P, Irarrazaval I, Rolle AJ, Gutierrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [DOI:10.1186/s40659-015-0059-y] 24. Arnaud P. Genomic imprinting in germ cells: imprints are under control. Reproduction 2010; 140(3):411-23. [DOI:10.1530/REP-10-0173] 25. Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sánchez A, Martin-Trujillo A, et al. Human Oocyte-Derived Methylation Differences Persist in the Placenta Revealing Widespread Transient Imprinting. PLoS Genet 2016; 12(11):e1006427. [DOI:10.1371/journal.pgen.1006427] 26. Ivanova E, Canovas S, Garcia-Martinez S, Romar R, Lopes JS, Rizos D, et al. Correction to: DNA methylation changes during preimplantation development reveal interspecies differences and reprogramming events at imprinted genes. Clin Epigenetics 2020; 12(1):96. [DOI:10.1186/s13148-020-00887-5] 27. Melamed N, Choufani S, Wilkins-Haug LE, Koren G, Weksberg R. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 2015; 10(6):474-83. [DOI:10.4161/15592294.2014.988041] 28. Hiura H, Okae H, Chiba H, Miyauchi N, Sato F, Sato A, et al. Imprinting methylation errors in ART. Reprod Med Biol 2014; 13(4):193-202. [DOI:10.1007/s12522-014-0183-3] 29. Krzyzewska IM, Alders M, Maas SM, Bliek J, Venema A, Henneman P. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics 2019; 11(1):53. [DOI:10.1186/s13148-019-0649-6] 30. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013; 99:632-41. [DOI:10.1016/j.fertnstert.2012.12.044] 31. Pinborg A, Loft A, Romundstad LB, Wennerholm UB , Söderström-Anttila V, Bergh C, et al. Epigenetics and assisted reproductive technologies. Acta Obstet Gynecol Scand 2016; 95(1):10-15. [DOI:10.1111/aogs.12799] 32. Kobayashi N, Miyauchi N, Tatsuta N, Kitamura A, Okae H, Hiura H, et al. Factors associated with aberrant imprint methylation and oligozoospermia. Sci Rep 2017; 7(1):42336. [DOI:10.1038/srep42336] 33. Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014; 21(1):131-7. [DOI:10.1177/1933719113492206] 34. Singh G, Singh V, Schneider JS. Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865(8):1968-81. [DOI:10.1016/j.bbadis.2018.10.016] 35. Ma P, Schultz RM. HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: Specificity versus compensation. Cell Death Differ 2016; 23(7):1119-27. [DOI: 10.1038/cdd.2016.31] 36. Gioia L, Barboni B, Turriani M, Capacchietti G, Pistilli MG, Berardinelli P, et al. The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation. Reproduction 2005; 130(1):29-39. [DOI:10.1530/rep.1.00550] 37. Jahangiri M, Shahhoseini M, Movaghar B. The Effect of Vitrification on Expression and Histone Marks of Igf2 and Oct4 in Blastocysts Cultured from Two-Cell Mouse Embryos. Cell J 2018; 19(4):607-13. [DOI:10.22074/cellj.2018.3959] 38. Jahangiri M, Shahhoseini M, Movaghar B. H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod Biomed Online 2014; 29(5):559-66. [DOI:10.1016/j.rbmo.2014.07.006] 39. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem 2011; 67(1):129-39. [DOI:10.1007/s13105-010-0050-6] 40. Arfat Y, Chang H, Gao Y. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators. J Cell Physiol 2018; 233(4):2695-704. [DOI:10.1002/jcp.26034] 41. Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24(8):4377-88. [DOI:10.1111/jcmm.15144] 42. Sills ES, Anderson RE, McCaffrey M, Li X, Arrach N, Wood SH. Gestational surrogacy and the role of routine embryo screening: Current challenges and future directions for preimplantation genetic testing. Birth Defects Res C Embryo Today 2016; 108(1):98-102. [DOI:10.1002/bdrc.21112] 43. Kennedy EM, Hermetz K, Burt A, Everson TM, Deyssenroth M, Hao K, et al. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 2020: 16(7):1-13. [DOI:10.1080/15592294.2020.1827704] 44. Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int J Mol Sci 2020; 21(7):2633. [DOI:10.3390/ijms21072633] 45. Rauschert S, Melton PE, Burdge G, Craig JM, Godfrey KM, Holbrook JD, et al. Maternal Smoking During Pregnancy Induces Persistent Epigenetic Changes Into Adolescence, Independent of Postnatal Smoke Exposure and Is Associated With Cardiometabolic Risk. Front Genet 2019; 10:770. [DOI:10.3389/fgene.2019.00770] 46. Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019; 11(1):32. [DOI: 10.1186/s13148-019-0631-3] 47. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 2011; 6(6):e21210. [DOI:10.1371/journal.pone.0021210] 48. Herberth G, Bauer M, Gasch M, Hinz D, Röder S, Olek S, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014; 133(2):543-50. [DOI:10.1016/j.jaci.2013.06.036] 49. Fauque P. Ovulation induction and epigenetic anomalies. Fertil Steril 2013; 99(3):616-23. [DOI:10.1016/j.fertnstert.2012.12.047] 50. Mason S, Zhou FC. Editorial: Genetics and epigenetics of fetal alcohol spectrum disorders. Front Genet 2015; 6:146. [DOI:10.3389/fgene.2015.00146] 51. Palma-Gudiel H, Cordova-Palomera A, Leza JC, Fananas L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neurosci Biobehav Rev 2015; 55:520-35. [DOI:10.1016/j.neubiorev.2015.05.016] 52. Pizzorusso T, Tognini P. Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes 2020; 11(7):742. [DOI:10.3390/genes11070742] 53. Alejandro EU, Mamerto TP, Chung G, Villavieja A , Gaus NL , Morgan E, et al. Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes. Int J Mol Sci 2020; 21(14):5003. [DOI:10.3390/ijms21145003] 54. Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int J Mol Sci 2020; 21(7):2633. [DOI:10.3390/ijms21072633] 55. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013; 8(9):935-43. [DOI:10.4161/epi.25578] 56. Zhang J, Ma X, Wang H, Ma D, Huang G. Elevated methylation of the RXRA promoter region may be responsible for its downregulated expression in the myocardium of patients with TOF. Pediatr Res 2014; 75(5):588-94. [DOI:10.1038/pr.2014.17] 57. Lesseur C, Armstrong DA, Paquette AG, Li Z, Padbury JF, Marsit CJ. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am J Obstet Gynecol 2014; 211(6):654.e1-654.e9. [DOI:10.1016/j.ajog.2014.06.037] 58. Zeisel SH. Importance of methyl donors during reproduction. Am J Clin Nutr 2009; 89(2):673S-7S. [DOI:10.3945/ajcn.2008.26811D] 59. Li Y. Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Front Genet 2018; 9:342. [DOI:10.3389/fgene.2018.00342] 60. Tserga A, Binder AM, Michels KB. Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB J 2017; 31(12):5149-58. [DOI:10.1096/fj.201601214RR] 61. Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr 2013; 97(1):94-9. [DOI:10.3945/ajcn.112.042572] 62. Stsepetova J, Baranova J, Simm J, Parm Ü, Rööp T, Sokmann S, et al. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure. Reprod Biol Endocrinol 2020; 18(1):3. [DOI:10.1186/s12958-019-0562-z] 63. Donkin I, Barres R. Sperm epigenetics and influence of environmental factors. Mol Metab 2018; 14:1-11. [DOI:10.1016/j.molmet.2018.02.006] 64. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol 2019; 220(3):267.e1-267.e39. [DOI:10.1016/j.ajog.2018.10.018] 65. Lélu K, Laffont S, Delpy L, Paulet PE, Périnat T, Tschanz SA, et al. Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol 2011; 187:2386-93. [DOI:10.4049/jimmunol.1101578] 66. Surace AEA, Hedrich CM. The Role of Epigenetics in Autoimmune/Inflammatory Disease. Front Immunol 2019; 10:1525. [DOI:10.3389/fimmu.2019.01525] 67. Richetto J, Meyer U. Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biol Psychiatry 2021; 89(3):215-26. [DOI:10.1016/j.biopsych.2020.03.008] 68. Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, Tang W , Redon J, Ordovas JM, et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics 2015; 7:55. [DOI:10.1186/s13148-015-0055-7] 69. Alahmar AT. Role of Oxidative Stress in Male Infertility: An Updated Review. J Hum Reprod Sci 2019; 12(1):4-18. [DOI:10.4103/jhrs.JHRS_150_18] 70. Chen Z, Gong L, Zhang P, Li Y, Liu B, Zhang L, et al. Epigenetic Down-Regulation of Sirt 1 via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life. Int J Biol Sci 2019; 15(6):1240-51. [DOI:10.7150/ijbs.33044] 71. Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 2016; 33(6):668-83. [DOI:10.1016/j.rbmo.2016.09.006] 72. Cao-Lei L, Veru F, Elgbeili G, Szyf M, Laplante DP, King S. DNA methylation mediates the effect of exposure to prenatal maternal stress on cytokine production in children at age 13(1/2) years: Project Ice Storm. Clin Epigenetics 2016; 8:54. [DOI:10.1186/s13148-016-0219-0] 73. DeSocio JE. Epigenetics, maternal prenatal psychosocial stress, and infant mental health. Arch Psychiatr Nurs 2018; 32(6):901-6. [DOI:10.1016/j.apnu.2018.09.001] 74. Barha CK, Salvante KG, Jones MJ, Farré P, Blais J, Kobor MS, et al. Early post-conception maternal cortisol, children's HPAA activity and DNA methylation profiles. J Dev Orig Health Dis 2019; 10(1):73-87. [DOI:10.1017/S2040174418000880] 75. Glover V, O'Connor TG, O'Donnell K. Prenatal stress and the programming of the HPA axis. Neurosci Biobehav Rev 2010; 35(1):17-22. [DOI:10.1016/j.neubiorev.2009.11.008] 76. Hogg K, Blair JD, McFadden DE, von Dadelszen P, Robinson WP. Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta. PLoS One 2013; 8(5):e62969. [DOI:10.1371/journal.pone.0062969] 77. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008; 3(2):97-106. [DOI:10.4161/epi.3.2.6034] 78. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res 2013; 47(7):880-91. [DOI:10.1016/j.jpsychires.2013.03.009] 79. Palma-Gudiel H, Cordova-Palomera A, Leza JC, Fananas L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neurosci Biobehav Rev 2015; 55:520-35. [DOI:10.1016/j.neubiorev.2015.05.016] 80. Simopoulou M, Sfakianoudis K, Rapani A, Giannelou P, Anifandis G, Bolaris S, et al. Considerations Regarding Embryo Culture Conditions: From Media to Epigenetics. In Vivo 2018; 32(3):451-60. [DOI:10.21873/invivo.11261] 81. Chen HF, Chen SU, Ma GC, Hsieh ST, Tsai HD, Yang YS, et al. Preimplantation genetic diagnosis and screening: Current status and future challenges. J Formos Med Assoc 2018; 117(2):94-100. [DOI:10.1016/j.jfma.2017.08.006] 82. Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril 2016; 105(3):571-87. [DOI:10.1016/j.fertnstert.2016.01.035] 83. Lindgren KE, Gulen Yaldir F, Hreinsson J, Holte J, Kårehed K, Sundström-Poromaa I, et al. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Ups J Med Sci 2018; 123(3):143-152. [DOI:10.1080/03009734.2018.1490830] 84. Schwarzer C, Esteves TC, Arauzo-Bravo MJ, Gac SL, Nordhoff V, Schlatt S, Boiani M, et al. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses. Hum Reprod 2012; 27(9):2627-40. [DOI:10.1093/humrep/des223] 85. Gad A, Schellander K, Hoelker M, Tesfaye D. Transcriptome profile of early mammalian embryos in response to culture environment. Anim Reprod Sci 2012; 134(1-2):76-83. [DOI: 10.1016/j.anireprosci.2012.08.014] 86. Armstrong S, MacKenzie J, Woodward B, Pacey A, Farquhar C. GM-CSF (granulocyte macrophage colony-stimulating factor) supplementation in culture media for women undergoing assisted reproduction. Cochrane Database Syst Rev 2020; 7:CD013497. [DOI:10.1002/14651858.CD013497] 87. Hemkemeyer SA, Schwarzer C, Boiani M, Ehmcke J, Le Gac S, Schlatt S, et al. Effects of embryo culture media do not persist after implantation: a histological study in mice. Hum Reprod 2014; 29(2):220-33. [DOI:10.1093/humrep/det411] 88. Van Montfoort APA, Arts E, Wijnandts L, Sluijmer A, Pelinck MJ, Land JA, et al. Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Hum Reprod Open 2020; 2020(1):hoz036. [DOI:10.1093/hropen/hoz036] 89. Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod Biomed Online 2004; 9(4):409-17. [DOI:10.1016/S1472-6483(10)61276-X] 90. Oliveira JB. Does embryo culture at low oxygen tension improve ART outcomes? JBRA Assist Reprod 2017; 21(1):01. [DOI:10.5935/1518-0557.20170001] 91. Morin SJ. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J Assist Reprod Genet 2017; 34(3):309-14. [DOI:10.1007/s10815-017-0880-z]