Iranian Society of Gynecology Oncology

Document Type : Original Research Article


1 Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran


Background: The presence of air in the catheter was found to affect the success of embryo transfer into the uterine cavity. This study determined the chances of achieving pregnancy using the intrauterine insemination (IUI) method with different air volumes inside the IUI catheter.  
Methods: This clinical trial study was performed on 521 IUI cycles among 270 couples from 2013 to 2014. The patients were divided into three groups (each group of 90 patients), based on three volumes of air inside the catheter (0.0 ml, 0.5 ml, and 1 ml). Other variables, include the woman’s age, menstrual cycle status, duration of infertility, type of infertility, sperm morphology, total motile sperm count (TMSC), number of motile sperm inseminated (NMSI), and pregnancy rate or the success rates of IUI were evaluated.
Results: The mean age of women and men were 33 and 30 years, respectively. Based on three volumes of air inside the catheter (0.0 ml, 0.5 ml, and 1.0 ml), the pregnancy rates were 5%, 9.4%, and 16.5%, respectively. TMSC of more than 5.6x106 and NMSI of more than 3.4x106 were associated with the chance of IUI achievement. At the same time, there was no significant relationship between the woman’s age, irregular menstrual cycles, and duration of infertility with the success rate of IUI. We found that the air volume of 1.0 ml inside the IUI catheter significantly increased the pregnancy rate compared to other groups.
Conclusion: The volume of air within the catheter had a significant relationship with the success rate of IUI.


Main Subjects

1. La Marca A, Mastellari E. Infertility: Epidemiology and etiology. Female Reproductive Dysfunction2020. p. 211-33. [DOI:10.1007/978-3-030-14782-2_11]
2. Akalewold M, Yohannes GW, Abdo ZA, Hailu Y, Negesse A. Magnitude of infertility and associated factors among women attending selected public hospitals in Addis Ababa, Ethiopia: a cross-sectional study. BMC Women's Health. 2022;22(1):1-11. [DOI:10.1186/s12905-022-01601-8] [PMID] [PMCID]
3. Cui Y, Li D, Zhou B, Lin Y, Zeng Y. Mediating role of social support between sleep quality, anxiety and depressive symptoms in Chinese women undergoing in vitro fertilization treatment. SAGE Open Med. 2020;8:2050312120930163. [DOI:10.1177/2050312120930163] [PMID] [PMCID]
4. Kim M, Moon S-H, Kim J-E. Effects of psychological intervention for Korean infertile women under in vitro fertilization on infertility stress, depression, intimacy, sexual satisfaction and fatigue. Arch Psychiatr Nurs. 2020;34(4):211-7. [DOI:10.1016/j.apnu.2020.05.001] [PMID]
5. Direkvand-Moghadam A, Sayehmiri K, Delpisheh A, Direkvand-Moghadam A. The global trend of infertility: an original review and meta-analysis. Int J Epidemiol Res. 2014;1(1):35-43.
6. Hazlina NHN, Norhayati MN, Bahari IS, Arif NANM. Worldwide prevalence, risk factors and psychological impact of infertility among women: a systematic review and meta-analysis. BMJ Open. 2022;12(3):e057132. [DOI:10.1136/bmjopen-2021-057132] [PMID] [PMCID]
7. Borumandnia N, Alavi Majd H, Khadembashi N, Alaii H. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. Int J Reprod Biomed. 2022;20(1):37-46. [DOI:10.18502/ijrm.v20i1.10407] [PMID] [PMCID]
8. Salter B. Markets, Cultures, and the Politics of Value: The Case of Assisted Reproductive Technology. Science, Technology, & Human Values. 2021;47(1):0162243921991929. [DOI:10.1177/0162243921991929]
9. Pereira R, Marques C, Pimenta J, Barbas J, Baptista M, Diniz P, et al. Assisted reproductive technologies (ART) directed to germplasm preservation. Advances in Animal Health, Medicine and Production: Springer; 2020. p. 199-215. [DOI:10.1007/978-3-030-61981-7_10]
10. Hansen KR, Peck JD, Coward RM, Wild RA, Trussell J, Krawetz SA, et al. Intrauterine insemination performance characteristics and post-processing total motile sperm count in relation to live birth for couples with unexplained infertility in a randomised, multicentre clinical trial. Hum Reprod Open. 2020;35(6):1296-305. [DOI:10.1093/humrep/deaa027] [PMID] [PMCID]
11. Roshan N, Nasrin S, Fatemeh GD. The effect of atmospheric temperature on the outcome of intrauterine insemination. Pak J Med Sci. 2008;24(1):127.
12. Nikbakht R, Saharkhiz N. The influence of sperm morphology, total motile sperm count of semen and the number of motile sperm inseminated in sperm samples on the success of intrauterine insemination. Int J Fertil Steril. 2011;5(3):168-73.
13. Pourmatroud E, Zargar M, Nikbakht R, Moramazi F. A new look at tamoxifen: co-administration with letrozole in intrauterine insemination cycles. Arch Gynecol Obstet. 2013;287(2):383-7. [DOI:10.1007/s00404-012-2556-3] [PMID]
14. Craig LB, Arya S, Burks HR, Warta K, Jarshaw C, Hansen KR, Peck JD. Relationship between semen regurgitation and pregnancy rates with intrauterine insemination. Fertil Steril. 2021;116(6):1526-31. [DOI:10.1016/j.fertnstert.2021.07.1183] [PMID] [PMCID]
15. Mohammadi F, Mehdinia Z, Ghasemi S, Zolfaghari Z, Amjadi FS, Ashrafi M, Zandieh Z. Relationship between sperm parameters and clinical outcomes of Intra Uterine Insemination (IUI). Caspian J Intern Med. 2021;12(1):70-6.
16. Wan J-P, Wang Z-J, Sheng Y, Chen W, Guo Q-Q, Xu J, et al. Effect of HCG-triggered ovulation on pregnancy outcomes in intrauterine insemination: an analysis of 5,610 first IUI natural cycles with donor sperm in China. Front Endocrinol. 2020;11:423. [DOI:10.3389/fendo.2020.00423] [PMID] [PMCID]
17. Mu X, Wang H, Liu PJ, Shi JZ. The interval between insemination and ovulation predicts outcome after intrauterine insemination with donor sperm (IUI‐D). Int J Gynaecol Obstet. 2021;156(2):341-8. [DOI:10.1002/ijgo.13641] [PMID]
18. Guan H-J, Pan L-Q, Song H, Tang H-Y, Tang L-S. Predictors of pregnancy after intrauterine insemination in women with polycystic ovary syndrome. J Med Res. 2021;49(5):03000605211018600. [DOI:10.1177/03000605211018600] [PMID] [PMCID]
19. Yavangi M, Varmaghani N, Pirdehghan A, Varmaghani M, Faryadras M. Comparison of pregnancy outcome in intrauterine insemination-candidate women with and without endometrial scratch injury: An RCT. Int J Reprod Biomed. 2021;19(5):457-64. [DOI:10.18502/ijrm.v19i5.9255] [PMID] [PMCID]
20. Starosta A, Gordon CE, Hornstein MD. Predictive factors for intrauterine insemination outcomes: a review. Fertil Res Pract. 2020;6(1):1-11. [DOI:10.1186/s40738-020-00092-1] [PMID] [PMCID]
21. Qin F, Zhou Y, Huan L, Gui W. Comparison of clomiphene and letrozole for superovulation in patients with unexplained infertility undergoing intrauterine insemination: A systematic review and meta-analysis. Medicine. 2020;99(31):e21006. [DOI:10.1097/MD.0000000000021006] [PMID] [PMCID]
22. Chatterjee S, Bagchi B, Chatterjee A. Intrauterine Insemination-Can we make it more successful? Int J Surg Med. 2020;6(5):43-7. [DOI:10.5455/ijsm.Intrauterine-Insemination-108]
23. Ombelet W, Dhont N, Thijssen A, Bosmans E, Kruger T. Semen quality and prediction of IUI success in male subfertility: a systematic review. Reprod Biomed Online. 2014;28(3):300-9. [DOI:10.1016/j.rbmo.2013.10.023] [PMID]
24. Barbonetti A, Castellini C, D'Andrea S, Minaldi E, Totaro M, Francavilla S, Francavilla F. Relationship between natural and intrauterine insemination-assisted live births and the degree of sperm autoimmunisation. Hum Reprod. 2020;35(6):1288-95. [DOI:10.1093/humrep/deaa070] [PMID]
25. Schorsch M, Gomez R, Hahn T, Hoelscher-Obermaier J, Seufert R, Skala C. Success Rate of Inseminations Dependent on Maternal Age? An Analysis of 4246 Insemination Cycles. Geburtshilfe Frauenheilkd. 2013;73(8):808-11. [DOI:10.1055/s-0033-1350615] [PMID] [PMCID]
26. Bahadur G, Homburg R, Łukaszuk M, Jayaprakasan K. Analyses and Approaches to Improve IUI Outcome. Textbook of Assisted Reproduction: Springer; 2020. p. 45-52. [DOI:10.1007/978-981-15-2377-9_6] [PMCID]
27. Gubert PG, Pudwell J, Van Vugt D, Reid RL, Velez MP. Number of motile spermatozoa inseminated and pregnancy outcomes in intrauterine insemination. Fertil Res Pract. 2019;5(1):1-9. [DOI:10.1186/s40738-019-0062-z] [PMID] [PMCID]
28. Verhaeghe C, Abnoun S, May-Panloup P, Corroenne R, Legendre G, Descamps P, et al. Conversion of in vitro fertilization cycles to intrauterine inseminations in patients with a poor ovarian response: Risk of multiple pregnancies. J Gynecol Obstet Hum Reprod. 2020;49(8):101831. [DOI:10.1016/j.jogoh.2020.101831] [PMID]
29. Kutlu T, Özkaya E, Şanverdi İ, Devranoğlu B, İpekçi C, Konukçu B, et al. The relationship between estradiol-progesterone alterations after ovulation trigger and treatment success in intrauterine insemination cycles. Urk J Obstet Gynecol. 2016;13(2):56-61. [DOI:10.4274/tjod.45656] [PMID] [PMCID]
30. Marschalek J, Egarter C, Vytiska-Binsdorfer E, Obruca A, Campbell J, Harris P, et al. Pregnancy rates after slow-release insemination (SRI) and standard bolus intrauterine insemination (IUI)-A multicentre randomised, controlled trial. Sci Rep. 2020;10(1):1-9. [DOI:10.1038/s41598-020-64164-4] [PMID] [PMCID]
31. Saxena P, Mishra A. IUI: Optimizing results, minimizing complications. Fertility Science and Research. 2021;8(1):25. [DOI:10.4103/fsr.fsr_1_21]
32. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): An analysis of 1038 cycles and a review of the literature. Fertil Steril. 2010;93(1):79-88. [DOI:10.1016/j.fertnstert.2008.09.058] [PMID]
33. Michau A, El Hachem H, Galey J, Le Parco S, Perdigao S, Guthauser B, et al. Predictive factors for pregnancy after controlled ovarian stimulation and intrauterine insemination: A retrospective analysis of 4146 cycles. J Gynecol Obstet Hum Reprod. 2019;48(10):811-5. [DOI:10.1016/j.jogoh.2019.05.006] [PMID]
34. Wang X, Zhang Y, Sun H-L, Wang L-T, Li X-F, Wang F, et al. Factors Affecting Artificial Insemination Pregnancy Outcome. Int J Gen Med. 2021;14:3961-9. [DOI:10.2147/IJGM.S312766] [PMID] [PMCID]
35. Mo J, Yang Q, Xia L, Niu Z. Embryo location in the uterus during embryo transfer: An in vitro simulation. PLoS One. 2020;15(10):e0240142. [DOI:10.1371/journal.pone.0240142] [PMID] [PMCID]
36. Schoolcraft WB. Importance of embryo transfer technique in maximizing assisted reproductive outcomes. Fertil Steril. 2016;105(4):855-60. [DOI:10.1016/j.fertnstert.2016.02.022] [PMID]
37. Haqnawaz F, Virk S, Qadir T, Imam S, Rizvi J. Comparison of Letrozole and Clomiphene Citrate Efficacy along with Gonadotrophins in Controlled Ovarian Hyperstimulation for Intrauterine Insemination Cycles. J Reprod Infertil. 2013;14(3):138-42.
38. Malvezzi H, Sharma R, Agarwal A, Abuzenadah AM, Abu-Elmagd M. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod Biol Endocrinol. 2014;12:121. [DOI:10.1186/1477-7827-12-121] [PMID] [PMCID]
39. Cohlen B, Bijkerk A, Van der Poel S, Ombelet W. IUI: review and systematic assessment of the evidence that supports global recommendations. Hum Reprod Update. 2018;24(3):300-19. [DOI:10.1093/humupd/dmx041] [PMID]
40. Ainsworth AJ, Barnard EP, Baumgarten SC, Weaver AL, Khan Z. Intrauterine insemination cycles: prediction of success and thresholds for poor prognosis and futile care. J Assist Reprod Genet. 2020;37(10):2435-42. [DOI:10.1007/s10815-020-01918-z] [PMID] [PMCID]
41. Muthigi A, Jahandideh S, Bishop LA, Naeemi FK, Shipley SK, O'Brien JE, et al. Clarifying the relationship between total motile sperm counts and intrauterine insemination pregnancy rates. Fertil Steril. 2021;115(6):1454-60. [DOI:10.1016/j.fertnstert.2021.01.014] [PMID]
42. Moreno V, Balasch J, Vidal E, Calafell JM, Cívico S, Vanrell JA. Air in the transfer catheter does not affect the success of embryo transfer. Fertil Steril. 2004;81(5):1366-70. [DOI:10.1016/j.fertnstert.2003.09.060] [PMID]
43. Christianson MS, Zhao Y, Shoham G, Granot I, Safran A, Khafagy A, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey. J Assist Reprod Genet. 2014;31(8):1029-36. [DOI:10.1007/s10815-014-0250-z] [PMID] [PMCID]
44. Matitashvili T, Sadek S, Celia G. The effect of embryo catheter loading technique on pregnancy rate. Reprod Fertil. 2022;3(2):103-9. [DOI:10.1530/RAF-22-0006] [PMID] [PMCID]
45. Jeong M, Kim SK, Kim H, Lee JR, Jee BC, Kim SH. Predictive value of sperm motility before and after preparation for the pregnancy outcomes of intrauterine insemination. Clin Exp Reprod Med. 2021;48(3):255-61. [DOI:10.5653/cerm.2021.04469] [PMID] [PMCID]
46. Findeklee S, Radosa JC, Radosa MP, Hammadeh ME. Correlation between total sperm count and sperm motility and pregnancy rate in couples undergoing intrauterine insemination. Sci Rep. 2020;10(1):7555-. [DOI:10.1038/s41598-020-64578-0] [PMID] [PMCID]
47. Hajder M, Hajder E, Husic A. The Effects of Total Motile Sperm Count on Spontaneous Pregnancy Rate and Pregnancy After IUI Treatment in Couples with Male Factor and Unexplained Infertility. Med Arch. 2016;70(1):39-43. [DOI:10.5455/medarh.2016.70.39-43] [PMID] [PMCID]
48. Kadour-Peero E, Steiner N, Frank R, Al Shatti M, Ruiter J, Dahan MH. Is controlled ovarian stimulation and insemination an effective treatment in older women with male partners with decreased total motile sperm counts? Arch Gynecol Obstet. 2022;305(1):261-6. [DOI:10.1007/s00404-021-06091-x] [PMID]
49. Soria M, Pradillo G, García J, Ramón P, Castillo A, Jordana C, Paricio P. Pregnancy predictors after intrauterine insemination: analysis of 3012 cycles in 1201 couples. J Reprod Infertil. 2012;13(3):158-66.
50. Osaikhuwuomwan J, Iribhogbe O, Aziken M, Orhue A. The Effect of Female Age on the Outcome of Intrauterine Insemination Treatment in a Public Hospital‑Assisted Reproduction Technology Unit. Niger J Clin Pract. 2018;21(8):988-92. [DOI:10.4103/njcp.njcp_248_16] [PMID]